

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.E. VLSI DESIGN

COURSE OUTCOMES (REGULATION 2021)

SEMESTER I

Course Code / Course Name: VL4153 / Graph theory and optimization techniques

CO No.	Course Outcomes (COs)
C101.1	Apply graph ideas is solving connectivity related problems.
C101.2	Apply fundamental graph algorithms to solve certain optimization problems.
C101.3	Formulate and construct mathematical models for linear programming problems
	and solve the transportation and assignment problems.
C101.4	Model various real life situations as optimization problems and effect their
	solution through Non-linear programming.
C101.5	Apply simulation modeling techniques to problems drawn from industry
	management and other engineering fields.

Course Code / Course Name: RM4151 / Research Methodology and IPR

CO No.	Course Outcomes (COs)
C102.1	Understand and adhere to ethical guidelines, avoiding plagiarism and ensuring
	data integrity.
C102.2	Develop skills in formulating research questions and designing robust
	methodologies.
C102.3	Learn techniques for collecting and analyzing data to derive meaningful insights.
C102.4	Understand the process of commercializing research innovations through
	licensing and collaboration.
C102.5	Examine the impact of intellectual property laws on innovation and economic
	development.

Course Code / Course Name: VL4151/ Analog IC Design

CO No.	Course Outcomes (COs)
C103.1	Develop amplifiers that meet user specifications, ensuring optimal performance
	according to requirements.
C103.2	Evaluate the frequency response and noise performance of amplifiers to assess their
	effectiveness in various conditions.
C103.3	Construct the feedback amplifiers and one-stage operational amplifiers (op-amps) to
	achieve desired stability and performance.

C103.4	Analyze two-stage operational amplifiers (op-amps) to optimize gain and bandwidth.
C103.5	Evaluate current mirrors and current sinks using MOS devices for efficient operation in
	circuits.

Course Code / Course Name: VL4152/ Digital CMOS VLSI design

CO No.	Course Outcomes (COs)
C104.1	Apply mathematical methods and circuit analysis models in the analysis of CMOS
	digital circuits to understand their behavior.
C104.2	Develop models of moderately sized static CMOS combinational circuits to realize specified digital functions, optimizing delay using RC delay models and logical effort.
C104.3	Design sequential logic at the transistor level and analyze trade-offs of sequencing elements, including flip-flops and transparent latches.
C104.4	Understand the design methodology of arithmetic building blocks and their role in digital circuit design.
C104.5	Design functional units such as ROM and SRAM, focusing on their architecture and implementation.

Course Code / Course Name: AP4152 / Advanced digital system design

CO No.	Course Outcomes (COs)
C105.1	Analyze synchronous sequential circuits to understand their behavior and timing
	requirements.
C105.2	Design asynchronous sequential circuits, considering hazard analysis and race condition
	minimization.
C105.3	Understand the testing procedures for combinational circuits and PLAs to ensure
	functional correctness.
C105.4	Design PLDs and ROMs, focusing on architecture and implementation for specific
	applications.
C105.5	Develop and use programming tools for implementing digital circuits that meet industry
	standards.

Course Code / Course Name: AP4153 / Semiconductor devices and modeling

CO No.	Course Outcomes (COs)
C106.1	Explore the properties of MOS capacitors.
C106.2	Analyze the various characteristics of MOSFET devices.
C106.3	Describe the various CMOS design parameters and their impact on performance
	of the device.
C106.4	Discuss the device level characteristics of BJT transistors.
C106.5	Identify the suitable mathematical technique for simulation.

Course Code / Course Name: VL4111 / FPGA Laboratory

CO No.	Course Outcomes (COs)
C107.1	Understand and use the System Verilog RTL design and synthesis features, including data types, literals, procedural blocks, statements, operators, and interfaces.
C107.2	CO2 stimulus, coverage, and dynamic arrays for more effective and efficient verification.

C107.3	Implement higher levels of abstraction in design and verification processes for
	improved efficiency and clarity.
C107.4	Develop Verilog test environments of significant capability and complexity to
	validate designs effectively.
C107.5	Integrate scoreboards, multichannel sequencers, and register models to enhance
	testbench functionality and performance.

Course Code / Course Name: VL4112 / Analog IC design laboratory

CO No.	Course Outcomes (COs)
C108.1	Extract process parameters of CMOS transistors, including threshold voltage and
	subthreshold slope, using SPICE simulations.
C108.2	Design CMOS inverters and analyze their performance, including VTC curves,
	transition voltage, and propagation delays.
C108.3	Simulate multi-stage ring oscillators using SPICE, and evaluate their frequency
	characteristics through FFT analysis.
C108.4	Analyze single-stage amplifier designs, including small-signal voltage gain and
	biasing conditions for optimal performance.
C108.5	Implement test benches for amplifier circuits and verify performance using
	SPICE simulations to compare theoretical and actual results.

SEMESTER II

Course Code / Course Name: VL4251 / Design for verification using UVM

CO No.	Course Outcomes (COs)
C109.1	Understand the basic concepts of UVM methodologies and their role in
	verification, focusing on how UVM enhances testing efficiency and accuracy.
C109.2	Create verification components using UVM to develop effective test
	environments that ensure thorough and reusable design validation.
C109.3	Generate register layer classes to automate testbench creation, streamlining the
	process of testing hardware registers in complex verification setups.
C109.4	Develop test benches using UVM to implement various test scenarios, ensuring
	functionality and reusability in the verification process.
C109.5	Understand advanced peripheral bus test benches and their application in
	verifying the interaction of peripheral buses within complex designs.

Course Code / Course Name: VL4291 / Low Power VLSI Design

CO No.	Course Outcomes (COs)
C110.1	Estimate the power dissipation of MOS circuits, analyzing the impact of various
	factors on power consumption.
C110.2	Design and analyze various MOS logic circuits, evaluating their performance
	and power characteristics.
C110.3	Apply low-power techniques to minimize power dissipation in MOS circuits,
	ensuring efficient energy consumption.
C110.4	Evaluate the power dissipation of integrated circuits (ICs), understanding the
	factors contributing to overall power usage.

C110.5	Develop algorithms aimed at reducing power dissipation	through	software,
	optimizing energy efficiency in digital systems.		

Course Code / Course Name: VL4292 / RFIC Design

CO No.	Course Outcomes (COs)
C111.1	Estimate the power dissipation of MOS circuits, analyzing the impact of various
	factors on power consumption.
C111.2	Design various MOS logic circuits, evaluating their performance and power
	characteristics.
C111.3	Apply low-power techniques to minimize power dissipation in MOS circuits,
	ensuring efficient energy consumption.
C111.4	Evaluate the power dissipation of integrated circuits (ICs), understanding the
	factors contributing to overall power usage.
C111.5	Develop algorithms aimed at reducing power dissipation through software,
	optimizing energy efficiency in digital systems.

Course Code / Course Name: VL4252 / VLSI Testing

CO No.	Course Outcomes (COs)
C112.1	Understand the VLSI testing process, focusing on the techniques and
	methodologies used to verify circuit functionality.
C112.2	Create logic simulation and fault simulation methods to evaluate the behavior of
	VLSI circuits under various conditions.
C112.3	Design tests for combinational and sequential circuits to ensure correctness and
	identify potential faults.
C112.4	Understand the concept of Design for Testability (DFT) and its importance in
	facilitating effective testing of complex circuits.
C112.5	Execute fault diagnosis in VLSI circuits to identify and isolate issues, ensuring
	efficient debugging and repair.

Course Code / Course Name: VE4152 / Embedded System Design

CO No.	Course Outcomes (COs)
C113.1	Understand different protocols and their relevance in embedded systems for
	effective communication and functionality.
C113.2	Apply state machine techniques and design process models to create efficient
	control systems in embedded applications.
C113.3	Utilize embedded software development tools and RTOS to enhance the
	functionality and performance of embedded systems.
C113.4	Apply networking principles to integrate and enable communication between
	embedded devices in a networked environment.
C113.5	Design suitable embedded systems for real-world applications, considering
	factors such as performance, power, and scalability.

CO No.	Course Outcomes (COs)
C114.1	Design simple wireless network concepts, understanding the fundamentals of
	wireless communication.
C114.2	Analyze different network architectures to optimize performance and scalability
	in wireless systems.
C114.3	Implement MAC layer and routing protocols to ensure efficient communication
	and data transfer in wireless networks.
C114.4	Solve timing and control issues in wireless sensor networks to improve
	synchronization and energy efficiency.
C114.5	Analyze secured wireless sensor networks to ensure data privacy, integrity, and
	reliable communication.

Course Code / Course Name: VL4006 / Advanced wireless sensor networks

Course Code / Course Name: VL4211 / Verification using UVM laboratory

CO No.	Course Outcomes (COs)
C115.1	Understand the features and capabilities of the UVM class library in
	SystemVerilog for effective verification.
C115.2	Integrate multiple UVCs into a complete verification environment to ensure
	comprehensive test coverage.
C115.3	Create reusable, scalable, and robust UVM verification components (UVCs) to
	enhance testbench modularity and efficiency.
C115.4	Develop a UVM testbench structure using the UVM library base classes and the
	UVM factory to ensure structured and maintainable test environments.
C115.5	Design a register model for the DUT and utilize the model for initialization and
	accessing DUT registers to streamline testing and validation.

Course Code / Course Name: VL4212 / Term Paper Writing and Seminar

CO No.	Course Outcomes (COs)
C116.1	Understand various research methodologies to enhance the ability to conduct
	academic research effectively.
C116.2	Refine academic writing skills, focusing on thesis development, organization,
	clarity, and coherence for producing scholarly term papers.
C116.3	Learn effective techniques for delivering engaging and informative presentations
	to communicate research findings clearly.
C116.4	Understand the principles of academic integrity, including proper citation
	practices and the avoidance of plagiarism in academic work.
C116.5	Demonstrate mastery of course concepts and skills by completing a substantial
	term paper that showcases academic writing proficiency.

SEMESTER III

Course Code / Course Name: VL4351 / VLSI Signal Processing

CO No.	Course Outcomes (COs)
C201.1	Determine the parameters influencing the efficiency of DSP architectures and
	apply pipelining and parallel processing techniques to optimize FIR structures.
C201.2	Analyze and modify design equations to create efficient DSP architectures for
	transforms while applying low-power techniques to reduce power dissipation.
C201.3	Enhance the speed of the convolution process and develop fast, area-efficient IIR
	structures for improved performance.
C201.4	Design fast and area-efficient multiplier architectures to improve computational
	efficiency in DSP systems.
C201.5	Minimize multiplications and develop fast hardware for synchronous digital
	systems to achieve optimal performance and resource utilization.

Course Code / Course Name: VL4092 / Soft Computing and Optimization Techniques

CO No.	Course Outcomes (COs)
C202.1	Develop applications using various soft computing techniques like Fuzzy,
	Genetic Algorithms (GA), and Neural Networks to solve complex problems.
C202.2	Implement a Neuro-Fuzzy and Neuro-Fuzz-GA expert system to combine the
	strengths of neural networks, fuzzy logic, and genetic algorithms.
C202.3	Apply machine learning techniques through Neural Networks to model and solve
	real-world problems effectively.
C202.4	Model a Neuro-Fuzzy system for clustering and classification tasks, leveraging
	its capability to handle uncertainty in data.
C202.5	Utilize optimization techniques to solve real-world problems, enhancing
	efficiency and accuracy in various applications.

Course Code / Course Name: CP4252 / Machine Learning

CO No.	Course Outcomes (COs)
C203.1	Understand and outline problems for each type of machine learning.
C203.2	Design a Decision tree and Random forest for an application.
C203.3	Implement Probabilistic Discriminative and Generative algorithms for an
	application and analyze the results.
C203.4	Use a tool to implement typical Clustering algorithms for different types of
	applications
C203.5	Design HMM for a Sequence Model type of application and identify
	applications suitable for different types of Machine Learning with suitable
	justification.

CO No.	Course Outcomes (COs)
C204.1	Analyze the concepts of IoT and its current developments to understand its
	impact and potential.
C204.2	Compare and contrast different platforms and infrastructures available for IoT,
	evaluating their strengths and weaknesses.
C204.3	Explain different protocols and communication technologies used in IoT for
	effective data exchange and system integration.
C204.4	Analyze big data analytics and programming techniques in IoT to extract
	meaningful insights and enhance system functionality.
C204.5	Implement IoT solutions for smart applications, applying IoT principles to real-
	world use cases for improved efficiency and automation.

Course Code / Course Name: ET4251 / IoT for smart systems

Course Code / Course Name: VL4311/ Project Work I

CO No.	Course Outcomes (COs)
C205.1	Demonstrate sound technical knowledge of the selected project topic,
	showcasing expertise in the area of study.
C205.2	Identify problems, formulate solutions, and effectively address complex
	challenges in engineering projects.
C205.3	Design engineering solutions to complex problems by utilizing a systems
	approach to ensure holistic and efficient outcomes.
C205.4	Conduct an engineering project, applying project management and technical
	skills to complete tasks successfully.
C205.5	Communicate engineering ideas and solutions effectively through presentations,
	addressing the needs of different audiences.

SEMESTER IV

Course Code / Course Name: VL4411 / Project Work II

CO No.	Course Outcomes (COs)
C206.1	Demonstrate a sound technical knowledge of the selected project topic,
	showcasing expertise and understanding in the field.
C206.2	Undertake problem identification, formulation, and solution to address complex
	challenges effectively.
C206.3	Design engineering solutions to complex problems by applying a systems
	approach to ensure comprehensive and efficient outcomes.
C206.4	Conduct an engineering project, integrating project management and technical
	skills to complete tasks successfully.
C206.5	Communicate engineering ideas and solutions effectively through presentations,
	following professional standards in engineering practice.