

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE COURSE OUTCOMES (REGULATION 2021)

SEMESTER III

Course Code / Course Name: MA3354 / Discrete Mathematics

CO No.	Course Outcomes (COs)
C201.1	Learn the key concepts to validate program logic and ensure the correctness and
	efficiency of computational processes.
C201.2	Develop the ability to analyze and evaluate structures across multiple levels to
	enhance comprehension and application of complex systems by identifying their
	underlying frameworks.
C201.3	Understand and apply the concept of functions that transform a finite set into
	another finite set to analyze and evaluate input-output relationships in computer
	science.
C201.4	Relate fundamental counting principles to solve combinatorial and quantitative
	problems effectively.
C201.5	Comprehend with the concepts and properties of algebraic structures and their
	applications in mathematical and computational contexts.

Course Code / Course Name: CS3351 / Digital Principles and Computer Organization

CO No.	Course Outcomes (COs)
C202.1	Learn the principles of digital logic to create efficient and functional circuit
	designs, diverse combinational digital circuits using logic gates.
C202.2	Develop the skills to design sequential circuits and understand their working
	principles, analyze and implement design procedures for reliable circuit.
C202.3	Understand the core principles of computer systems, architecture and the
	processes involved in the execution of instructions.
C202.4	Study various control design approaches and evaluate their effectiveness.
	Identify potential hazards to ensure safe and efficient system operation
C202.5	Identify the features of different memory systems and explore I/O
	communication methods and their role in system performance.

Course Code / Course Name: AD3391 / Database Design and Management

CO No.	Course Outcomes (COs)
C203.1	Understand the database development life cycle and apply conceptual modeling
	techniques to analyze, design, and evaluate database systems
C203.2	Apply SQL and programming in SQL to create, manipulate and query the
	database, and to write and optimizing queries for data management.
C203.3	Learn to design normalized and efficient database schemas, ensuring data
	integrity and minimizing redundancy.
C203.4	Analyze transaction management concepts such as ACID properties to maintain
	consistency and reliability in database operations.
C203.5	Apply data models and querying techniques in Object-relational and No-SQL
	databases to manage data efficiently across various database types.

Course Code / Course Name: AD3351 / Design and Analysis of Algorithms

CO No.	Course Outcomes (COs)
C204.1	Evaluate the computational complexity of recursive and non-recursive
	algorithms, apply mathematical reasoning to solve and compare their efficiency
	under different scenarios.
C204.2	Examine the computational trade-offs of brute force, divide and conquer,
	decrease and conquer, and transform and conquer techniques.
C204.3	Illustrate dynamic programming and greedy principles and evaluate the
	conditions under which each technique is optimal.
C204.4	Apply iterative methods to develop solutions for optimization problems, analyze
	the convergence of these techniques with applicability to various scenarios.
C204.5	Analyze the theoretical limits of computational algorithms for solving
	constrained problems to design and implement effective solutions.

Course Code / Course Name: AD3301 / Data Exploration and Visualization

CO No.	Course Outcomes (COs)
C205.1	Understand the foundational concepts of exploratory data analysis, comprehend
	its purpose and role in identifying patterns and insights within datasets.
C205.2	Demonstrate data visualization techniques to create visual representations of data
	using Matplotlib and relate the effectiveness of various visualization styles.
C205.3	Compare statistical methods to explore univariate and evaluate patterns and
	anomalies within single-variable datasets.
C205.4	Use statistical and graphical methods to examine relationships between two
	variables, analyze correlations to assess patterns and trends in bivariate data.
C205.5	Identify advanced exploration and visualization techniques to investigate
	multivariate datasets and time series data for uncover complex relationships.

Course Code / Course Name: AL3391 / Artificial Intelligence

CO No.	Course Outcomes (COs)
C206.1	Understand and describe the foundational principles of intelligent agent frameworks, by exploring their components and architecture in real-world scenarios.
C206.2	Use various problem-solving methodologies to solve complex tasks with expected outcomes in diverse contexts.

C206.3	Utilize game-playing strategies and constraint satisfaction problem (CSP)
	techniques to develop intelligent solutions to specific scenarios.
C206.4	Apply principles of formal logic to construct arguments, evaluate logical
	consistency, using deductive and inductive reasoning methods.
C206.5	Develop probabilistic models to analyze uncertain scenarios, evaluate the
	likelihood of events, and make well-informed decisions based on the outcomes.

Course Code / Course Name: AD3381 / Database Design and Management Laboratory

CO No.	Course Outcomes (COs)
C207.1	Demonstrate the stages of the database development life cycle and assess the
	significance of each phase in building an effective database system.
C207.2	Illustrate the principles of conceptual-to-relational mapping and normalization
	to design efficient relational database schemas for data organization.
C207.3	Utilize SQL to create, manipulate, and retrieve data from databases, study query
	performance in meeting data requirements.
C207.4	Apply database design and programming techniques to develop real-time
	applications and assess their functionality in solving practical problems.
C207.5	Design object-relational databases using advanced concepts by applying
	appropriate queries to retrieve, manipulate and manage complex data types.

Course Code / Course Name: AD3311 / Artificial Intelligence Laboratory

CO No.	Course Outcomes (COs)
C208.1	Implement AI algorithms, such as search algorithms, machine learning models,
	and optimization methods, to address complex real-world problems.
C208.2	Design and develop intelligent agents using frameworks with insights into
	system improvements.
C208.3	Understand the principles of supervised and unsupervised learning, apply
	machine learning techniques to real datasets.
C208.4	Construct systems for knowledge representation using logic-based techniques,
	reasoning algorithms to infer new knowledge from existing data.
C208.5	Analyze the ethical considerations surrounding the use of AI with critical
	thinking to assess the societal impacts for mitigating potential biases and risks in
	AI applications.

Course Code / Course Name: GE3361 / Professional Development

CO No.	Course Outcomes (COs)
C209.1	Use MS Word to create quality documents by formatting and organizing
	technical content effectively to meet academic and professional requirements.
C209.2	Use MS Excel to perform data operations and analytics for effective data
	management and visualization competently.
C209.3	Use MS PowerPoint to create high-quality academic presentations by integrating
	charts, graphs, and multimedia elements with clarity and engagement.
C209.4	Use Outlook to efficiently manage emails, calendars, and cloud storage to
	streamline personal and professional productivity.
C209.5	Use OneDrive for effective communication and collaboration in team settings
	for effective communication and collaboration.

SEMESTER IV

Course Code / Course Name: MA3391 / Probability and Statistics

CO No.	Course Outcomes (COs)
C210.1	Understand the fundamental knowledge of the concepts of probability to analyze
	uncertainty in real-world problems.
C210.2	Relate the concepts of one and two-dimensional random variables to model
	relationships in datasets.
C210.3	Demonstrate testing of hypothesis for small and large samples to solve real-life
	challenges.
C210.4	Apply the basic concepts of classifications of design of experiments to improve
	processes in agriculture.
C210.5	Interpret the concept of sampling, apply appropriate sampling methods, and
	analyze the resulting data to draw meaningful insights from a population.

Course Code / Course Name: AL3452 / Operating Systems

CO No.	Course Outcomes (COs)
C211.1	Analyze various scheduling algorithms and process synchronization to optimize
	CPU utilization.
C211.2	Explain deadlock, prevention, and avoidance algorithms to understand system
	reliability.
C211.3	Compare and contrast various memory management schemes to evaluate their
	efficiency.
C211.4	Demonstrate the functionality of file systems, I/O systems, and virtualization to
	understand storage and processing mechanisms.
C211.5	Compare iOS and Android operating systems to identify their unique features.

Course Code / Course Name: AL3451 / Machine Learning

CO No.	Course Outcomes (COs)
C212.1	Explain the basic concepts of machine learning to understand its foundational
	principles.
C212.2	Construct supervised learning models to predict outcomes based on labelled data.
C212.3	Construct unsupervised learning algorithms to uncover hidden patterns in data.
C212.4	Evaluate and compare different models to determine their accuracy and
	efficiency.
C212.5	Apply supervised and unsupervised learning algorithms to solve classification,
	regression, and clustering tasks.

Course Code / Course Name: AD3491 / Fundamentals of Data Science and Analytics

CO No.	Course Outcomes (COs)
C213.1	Explain the data analytics pipeline to understand the sequential stages of data
	processing to optimize workflows for better insights.
C213.2	Describe and visualize data to uncover patterns and trends effectively to make
	complex information more comprehensible.
C213.3	Perform statistical inferences from data to draw meaningful conclusions to
	support decision-making under uncertainty.

C213.4	Analyze the variance in the data to identify sources of variability in the data to
	assess its impact on outcomes.
C213.5	Build models for predictive analytics to forecast future trends and behaviors for
	predictive analytics to make data-driven predictions.

Course Code / Course Name: CS3591 / Computer Networks

CO No.	Course Outcomes (COs)
C214.1	Explain the basic layers and its functions in computer networks to understand
	their role in data transmission.
C214.2	Understand the basics of data flows from one node to another in a network.
C214.3	Analyze routing algorithms to determine the best path for data transmission and
	improve network efficiency and minimize delays.
C214.4	Describe protocols for various functions in the network to ensure smooth
	communication and data transfer.
C214.5	Analyze the working of various application layer protocols to understand their
	role in enabling network services.

Course Code / Course Name: GE3451 / Environmental Sciences and Sustainability

CO No.	Course Outcomes (COs)
C215.1	Identify and understand the functions of environment, ecosystems and
	biodiversity and their conservation.
C215.2	Classify the causes, effects of environmental pollution and natural disasters and
	contribute to the preventive measures in the society.
C215.3	Understand the renewable and non-renewable resources towards sustainable
	measures to preserve them for future generations.
C215.4	Recognize the different goals of sustainable development and apply them for
	suitable technological advancement and societal development
C215.5	Demonstrate the knowledge of sustainability practices and identify green
	materials, energy cycles and the role of sustainable urbanization

Course Code / Course Name: AD3411 / Data Science and Analytics Laboratory

CO No.	Course Outcomes (COs)
C216.1	Develop Python programs to handle data using Numpy and Pandas for efficient
	data manipulation and to process and analyze large datasets.
C216.2	Perform descriptive analytics to summarize and interpret data characteristics and
	gain insights into data distribution and trends.
C216.3	Perform data exploration using Matplotlib to visualize and understand data
	patterns to create informative visual representations of data.
C216.4	Perform inferential data analytics to make conclusions and predictions based on
	sample data to estimate population parameters and assess relationships.
C216.5	Build models of predictive analytics to forecast future trends and to generate
	data-driven solutions for decision-making.

Course Code / Course Name: AD3461 / Machine Learning Laboratory

CO No.	Course Outcomes (COs)
C217.1	Apply suitable algorithms for selecting the appropriate features for analysis to
	improve model performance.

C217.2	Implement supervised machine learning algorithms on standard datasets and
	evaluate the performance to solve classification and regression problems.
C217.3	Demonstrate unsupervised machine learning algorithms on standard datasets and
	evaluate the performance to discover hidden patterns in data.
C217.4	Build graph-based learning models for standard datasets to capture relationships
	and dependencies in data.
C217.5	Assess and compare the performance of different ML algorithms and select the
	suitable one based on the application to optimize model selection.

SEMESTER V

Course Code / Course Name: AD3501 / Deep Learning

CO No.	Course Outcomes (COs)
C301.1	Understand and explain the foundational concepts of deep neural networks,
	applying the principles to evaluate their architecture and functions.
C301.2	Utilize convolutional neural networks (CNNs) for image processing tasks,
	applying CNN architectures to analyze and classify visual data effectively.
C301.3	Demonstrate recurrent neural networks (RNNs) and their variants for text
	analysis by applying these models to understand sequential patterns and
	contextual information.
C301.4	Assess model evaluation techniques for different machine learning applications
	to ensure the effectiveness of models in various domains.
C301.5	Implement autoencoders and generative models for specific applications to study
	and generate data for unsupervised learning tasks.

Course Code / Course Name: CW3551 / Data and Information Security

CO No.	Course Outcomes (COs)
C302.1	Understand the foundational concepts of data and information security, applying
	these concepts to evaluate the protection mechanisms in information systems.
C302.2	Relate the legal, ethical, and professional issues in information security, applying
	ethical decision-making frameworks to address challenges and ensure
	compliance in real-world scenarios.
C302.3	Apply various authentication schemes to simulate different applications,
	analyzing their effectiveness in securing systems and verifying user identity.
C302.4	Identify security practices and system security standards to evaluate their role
	in securing systems and prevent breaches in various environments.
C302.5	Develop web security protocols, evaluating their effectiveness in securing e-
	commerce applications and ensuring safe transactions over the internet.

Course Code / Course Name: CS3551 / Distributed Computing

CO No.	Course Outcomes (COs)
C303.1	Understand the basic principles of distributed systems and involve multiple
	independent entities work together to achieve a common goal.
C303.2	Demonstrate techniques to manage concurrency and maintain a consistent view
	of data across multiple nodes by addressing synchronization challenges.
C303.3	Examine resource sharing methods like load balancing and distributed file
	systems to optimize the use of resources in distributed environments.

C303.4	Explore consensus algorithms like Paxos and Raft to achieve agreement across
	distributed nodes to ensure reliability and fault tolerance.
C303.5	Illustrate the core concepts of cloud computing and cloud service models to
	understand on-demand access to computing resources.

Course Code / Course Name: CCS334 / Big Data Analytics

CO No.	Course Outcomes (COs)
C304.1	Understand the concept of big data and its characteristics to explore real-world
	use cases across business domains for data-driven decision-making.
C304.2	Recall the principles of NoSQL databases for managing unstructured and semi-
	structured big data for handling large datasets.
C304.3	Install and configure Hadoop, along with its Hadoop Distributed File System
	(HDFS), to store and process large datasets for distributed data processing.
C304.4	Use Hadoop's MapReduce framework to process and analyze large datasets in
	parallel for efficient computation.
C304.5	Leverage Hadoop ecosystem tools like HBase, Cassandra, Pig, and Hive for
	efficient big data storage, querying, and analytics to process massive datasets.

Course Code / Course Name: CCS335/ Cloud Computing (Professional Elective I)

CO No.	Course Outcomes (COs)
C305.1	Relatekey design challenges in cloud computing, such as scalability, resource
	management, and performance optimization to build efficient cloud architecture.
C305.2	Understand the concept of virtualization and its different types to enhance
	resource utilization and flexibility in cloud environments
C305.3	Experiment with hardware resource virtualization and containerization using
	Docker to simplify application deployment and improve system efficiency.
C305.4	Learn to develop, deploy, and manage cloud-based services to run applications
	and scale resources as needed.
C305.5	Identify the security challenges in the cloud and explore methods to mitigate
	risks and secure cloud infrastructures.

Course Code / Course Name: CCS336/ Cloud Cervices Management (Professional Elective II)

CO No.	Course Outcomes (COs)
C306.1	Utilize various cloud service models and deployment strategies with their
	implications for businesses in terms of scalability, security, and management.
C306.2	Develop skills to monitor, optimize, and manage cloud resources and services to
	ensure efficient service delivery and performance.
C306.3	Understand cloud security frameworks and compliance requirements to secure
	cloud environments and ensure regulatory compliance.
C306.4	Learn to design and deploy cloud solutions for various business needs to create
	scalable and cost-effective systems for enterprise applications.
C306.5	Assess the performance of cloud services by identifying areas for improvement
	to optimize cloud service efficiency, cost-effectiveness, and user experience.

Course Code / Course Name: AD3511 / Deep Learning Laboratory

CO No.	Course Outcomes (COs)
C307.1	Implement deep neural networks to solve basic problems like classification and
	regression to build and train models to handle structured data tasks.
C307.2	Use Convolutional Neural Networks (CNNs) for image recognition,
	classification, and processing tasks to detect patterns and features in visual data.
C307.3	Implement Recurrent Neural Networks (RNNs) and their variants (LSTMs,
	GRUs) to process sequential data for sentiment analysis and language
	translation.
C307.4	Utilize generative models like GANs to create synthetic data for augmentation
	to improve model generalization and performance.
C307.5	Create practical solutions for real-world problems by selecting and applying the
	appropriate deep neural network architectures to specific applications.

Course Code / Course Name: AD3512 / Summer internship

CO No.	Course Outcomes (COs)
C308.1	Participate in real-world projects and tasks that provide practical to develop
	professional skills and knowledge applicable to career goals.
C308.2	Utilize academic concepts and techniques to address real-life challenges to
	enhance problem-solving abilities by working on industry-relevant projects.
C308.3	Sole as teams with professionals and peers to complete tasks and projects
	through effective communication, collaboration, and conflict resolution.
C308.4	Make use of the tools, software, and technologies commonly used in industry by
	gaining proficiency in platforms that will enhance future career prospects.
C308.5	Motivation from the industry mentors who provide feedback and advice on
	career development that can support career progression.

SEMESTER VI

$\textbf{Course Code / Course Name:} \ CS3691 \ / \ Embedded \ Systems \ and \ IoT$

CO No.	Course Outcomes (COs)
C309.1	Interpret the internal structure and components of embedded processors to
	handle tasks and interface with other system elements in embedded systems.
C309.2	Develop embedded systems applications by writing C programs tailored to
	hardware constraints for optimizing code in embedded environments.
C309.3	Create basic embedded applications by integrating hardware and software
	components to develop functional solutions for specific tasks.
C309.4	Examine different communication models used in IoT systems to understand
	their strengths, limitations, and suitability for various IoT applications.
C309.5	Utilize platforms like Arduino and Raspberry Pi to design and prototype IoT
	applications that connect sensors, actuators, and networks to transmit data.

$\label{lem:course Code of Course Name: OCE351/Environmental and Social Impact Assessment (Open Elective - I^*)$

CO No.	Course Outcomes (COs)
C310.1	Illustrate scoping and screening processes to identify potential environmental
	and social impacts of projects before carrying out detailed assessments.
C310.2	Learn various methodologies for predicting and assessing environmental
	impacts, in evaluating potential project effects.
C310.3	Select environmental impact assessments (EIAs) and environmental
	management plans (EMPs) that comply with regulations and minimize negative
	environmental effects.
C310.4	Analyze EIA reports to ensure thorough evaluation of potential environmental
	consequences for adequacy and accuracy of findings and recommendations.
C310.5	Identify the legal and regulatory frameworks governing environmental and social
	assessments for project planning and implementation.

Course Code / Course Name: CCS345/ Ethics and AI (Professional Elective III)

CO No.	Course Outcomes (COs)
C311.1	Understand and learn the principles of morality and ethics in AI, applying ethical
	frameworks to assess AI behavior and decision-making processes.
C311.2	Relate the ethical issues and challenges in real-time AI applications, applying
	this understanding to evaluate potential risks and impacts on society.
C311.3	Find the ethical harms that can arise in AI systems, apply ethical initiatives to
	mitigate risks and promote responsible AI development.
C311.4	Make use of AI standards and regulations to ensure safe design practices for
	autonomous and semi-autonomous systems in real-world applications.
C311.5	Demonstrate the concepts of Roboethics and the morality of robotic systems to
	evaluate the professional responsibilities involved in designing and deploying
	robots.
C311.6	Survey the societal issues in AI, applying national and international strategies to
	address challenges and promote the responsible use of AI technologies
	worldwide.

Course Code / Course Name: CCS354 / Network Security (Professional Elective V)

CO No.	Course Outcomes (COs)
C313.1	Examine various encryption techniques, including symmetric, asymmetric, and
	hash-based methods to find their strengths in securing data.
C313.2	Classify management techniques for secure data exchange and explore different
	authentication methods to ensure data integrity and access control.
C313.3	Analyze the security measures implemented at the network and transport layers,
	to evaluate their effectiveness in protecting data during transmission.
C313.4	Identify security standards at the application layer, including protocols like
	HTTPS, SSL/TLS, and OAuth to protect data and ensure secure communication.
C313.5	Apply security measures for real-time applications, focusing on securing
	communication and preventing unauthorized access in dynamic environments.

Course Code / Course Name: CCS359/ Quantum Computing (Professional Elective VI)

CO No.	Course Outcomes (COs)
C314.1	Relate the fundamental principles of quantum computing to understand quantum
	algorithms and computations.
C314.2	Explore the principles of quantum mechanics, such as wave-particle duality and
	uncertainty that form the foundation of quantum computing t.
C314.3	Differentiate various quantum computation models, such as quantum circuits and
	quantum Turing machines with their applications.
C314.4	Build quantum circuits using quantum computation environments like Qiskit and
	Cirq frameworks for practical quantum computing.
C314.5	Identify quantum operations, including the effects of noise on quantum systems
	and methods for error correction to confirm reliable quantum computations.

Course Code / Course Name: CCS360/ Recommender Systems (Professional Elective IV)

CO No.	Course Outcomes (COs)
C312.1	Understand the basic concepts of recommender systems, applying these concepts
	to study user preferences and recommend relevant items effectively.
C312.2	Apply machine-learning and data-mining algorithms to recommender system
	datasets to identify patterns and optimize recommendation accuracy.
C312.3	Demonstrate collaborative filtering methods in recommender systems to
	evaluate the performance and assess the quality and relevance of
	recommendations.
C312.4	Develop a simple recommender system, applying basic algorithms to provide
	personalized recommendations based on user data.
C312.5	Experiment advanced topics in recommender systems by applying knowledge of
	sophisticated techniques to enhance the performance and scalability.