

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE OUTCOMES (REGULATION 2021)

SEMESTER III

Course Code / Course Name: MA3355 / Random Processes and Linear Algebra

CO No.	Course Outcomes (COs)
C201.1	Explain the fundamental concepts of advanced algebra and their role in modern
	mathematics and applied contexts.
C201.2	Demonstrate accurate and efficient use of advanced algebraic techniques.
C201.3	Apply the concept of random processes in engineering disciplines.
C201.4	Understand the fundamental concepts of probability with a thorough knowledge
	of standard distributions that can describe certain real-life phenomenon.
C201.5	Understand the basic concepts of one and two dimensional random variables and
	apply them to model engineering problems.

Course Code / Course Name: CS3353 / C Programming and Data Structures

CO No.	Course Outcomes (COs)
C202.1	Demonstrate proficiency in C programming fundamentals, including data types,
	variables, expressions, conditional statements, functions, recursion, and arrays.
C202.2	Apply advanced C programming features such as structures, unions, enumerated
	data types, pointers, file handling, and preprocessor directives to solve complex
	problems.
C202.3	Implement linear data structures such as lists, stacks, queues, and priority queues
	in various applications.
C202.4	Design non-linear data structures like binary trees, expression trees, and hashing
	techniques with appropriate collision resolution methods.
C202.5	Utilize sorting and searching algorithms to efficiently process large data sets,
	ensuring optimal performance in tasks such as data organization and retrieval.

Course Code / Course Name: EC3354 / Signals and Systems

CO No.	Course Outcomes (COs)	
C203.1	Classify signals and systems based on their characteristics such as continuity, time dependence, periodicity, and energy/power properties.	
C203.2	Analyze continuous-time signals using Fourier series, Fourier Transform, and	
	Laplace Transforms to understand their frequency-domain characteristics.	

C203.3	Evaluate linear time-invariant continuous-time systems using impulse response, convolution integrals, and transform methods (Fourier and Laplace) for system analysis.
C203.4	Apply the concepts of sampling, discrete-time Fourier transform (DTFT), and Z transform to analyze discrete-time signals and systems.
C203.5	Analyze discrete-time systems using impulse response, difference equations, convolution sum, and transform techniques (DTFT, Z-transform), for both recursive and non-recursive systems.

Course Code / Course Name: EC3353 / Electronic Devices and Circuits

CO No.	Course Outcomes (COs)
C204.1	Identify the structure, operation, and characteristics of semiconductor devices such as PN junction diodes, Zener diodes, BJTs, MOSFETs, and UJTs, including rectifiers and their applications.
C204.2	Explain the concepts of amplifiers by discussing the load line, operating point, biasing methods, small-signal models of BJTs and MOSFETs, and evaluating gain and frequency response for various amplifier configurations.
C204.3	Discuss the functioning of multistage amplifiers and differential amplifiers, including cascode amplifiers, and describe their performance in common-mode and difference-mode configurations.
C204.4	Understand the advantages of negative feedback, different types of feedback amplifiers, and the conditions for oscillations in various oscillator designs.
C204.5	Explain the operation of power amplifiers and DC/DC converters, including Class A, B, AB, C amplifiers, and MOSFET power amplifiers, along with the analysis and working principles of Buck, Boost, and Buck-Boost converters.

Course Code / Course Name: EC3351 / Control Systems

CO No.	Course Outcomes (COs)
C205.1	Identify the components and basic structure of control systems, including
	feedforward and feedback control, transfer function models, block diagrams,
	signal flow graphs, and different types of control systems like DC and AC servo
G205.2	systems.
C205.2	Analyze the time response of control systems, including transient and steady-
	state responses, performance measures for first and second-order systems, and
	the effect of additional zeros and poles on system performance.
C205.3	Examine the frequency response of control systems, using Bode, Polar, and
	Nyquist plots to evaluate system performance, and design compensators using
	cascade lead, lag, and lag-lead compensation.
C205.4	Evaluate the stability of control systems using various criteria such as Routh-
	Hurwitz, root locus, and Nyquist, and understand concepts like bounded-input
	bounded-output stability and relative stability.
C205.5	Apply state variable methods to represent, analyze, and solve control systems,
	including converting between state variable models and transfer functions,
	analyzing controllability and observability, and designing digital control
	systems using state feedback.

Course Code / Course Name:	EC3352 / Digital Systems Design

CO No.	Course Outcomes (COs)
C206.1	Apply Boolean algebra and simplification procedures relevant to digital logic for optimizing digital expressions.
C206.2	Design various combinational digital circuits using logic gates, ensuring functionality and efficiency in digital systems.
C206.3	Develop synchronous sequential circuits, focusing on their behavior, timing, and state transitions in clocked environments.
C206.4	Construct asynchronous sequential circuits, addressing their stable and unstable states, and mitigating race conditions and hazards.
C206.5	Build logic gates and implement digital systems using programmable devices, demonstrating proficiency with hardware description languages and programmable logic devices.

Course Code / Course Name: EC3361 / Electronic Devices and Circuits Laboratory

CO No.	Course Outcomes (COs)
C207.1	Explain the basic concepts of number systems, Boolean algebra, canonical
	forms, and simplification techniques such as Karnaugh maps and tabulation
	methods for efficient Boolean expression implementation.
C207.2	Design combinational logic circuits including adders, multiplexers, decoders,
	and encoders, applying these concepts to real-world applications like digital
	trans-receivers and arithmetic units.
C207.3	Analyze and design synchronous sequential circuits such as flip-flops, counters,
	and shift registers, utilizing state minimization and Moore/Mealy models to
	develop functional models like real-time clocks and rolling displays.
C207.4	Design asynchronous sequential circuits, addressing stable and unstable states,
	hazards, and races, and applying state reduction techniques to create hazard-free
	circuits.
C207.5	Compare different logic families (RTL, TTL, ECL, CMOS) and design
	combinational and sequential circuits using programmable logic devices like
	PROM, PLA, and PAL with applications in memory systems and IC
	implementation.

Course Code / Course Name: CS3362 / C Programming and Data Structures Laboratory

CO No.	Course Outcomes (COs)
C208.1	Utilize various constructs of C programming, such as data types, control structures, functions, and arrays, to design and develop applications for solving real-world or technical problems effectively.
C208.2	Write functions to implement a wide range of operations on linear and non- linear data structures, such as linked lists, stacks, queues, trees, and graphs, while ensuring efficient handling of data.
C208.3	Apply suitable linear and non-linear data structure operations, such as insertion, deletion, searching, and traversal, to effectively solve complex problems in real-world scenarios.
C208.4	Implement appropriate hash functions to ensure efficient data storage and retrieval, focusing on minimizing collisions and optimizing lookup times in large data sets.
C208.5	Execute various sorting and searching algorithms, including Quick Sort, Merge Sort, and Binary Search, to efficiently handle and organize data for specific applications, ensuring optimal performance.

Course Code / Course Name: C	GE3361 / Professional Development
------------------------------	-----------------------------------

CO No.	Course Outcomes (COs)	
C209.1	Demonstrate the ability to create well-structured and professional documents	
	using MS Word for technical and academic purposes.	
C209.2	Utilize MS Excel to perform data operations, analyse trends, and visualize data	
	effectively using tables, charts, and graphs.	
C209.3	Record and retrieve data using MS Excel to support data-driven decision-	
	making and information sharing.	
C209.4	Create interactive and visually appealing academic presentations using MS	
	PowerPoint, incorporating tables, graphs, media objects, and interlinked	
	elements.	
C209.5	Analyse and interpret visual data representations and utilize them for effective	
	communication and decision-making.	

SEMESTER IV

Course Code / Course Name: EC3452 / Electromagnetic Fields

CO No.	Course Outcomes (COs)
C210.1	Relate the fundamentals of vectors and coordinate systems to electromagnetic concepts, understanding how these mathematical tools are applied in analyzing electromagnetic fields.
C210.2	Analyze the characteristics of electrostatic fields, exploring their properties, behavior, and how they influence charged particles and conductors in various environments.
C210.3	Interpret the concepts of electric fields in material space, solving boundary conditions and understanding the interaction between electric fields and materials in different settings.
C210.4	Explain the concepts and characteristics of magnetostatic fields in material space, solving boundary conditions to understand the behavior of magnetic fields in various media.
C210.5	Determine the significance of time-varying fields, analyzing how changes in electromagnetic fields over time impact various physical systems and applications in electromagnetics.

Course Code / Course Name: EC3401 / Networks and Security

CO No.	Course Outcomes (COs)
C211.1	Explain network models, layers, and their functions, detailing the role of each
	layer in the OSI and TCP/IP models and how they facilitate communication in
	a network.
C211.2	Categorize routing protocols, examining their features, advantages, and
	limitations in different network environments.
C211.3	List the functions of the transport and application layers, focusing on their roles
	in data transmission and application communication.
C211.4	Evaluate network security mechanisms to determine the most suitable methods
	for securing data and resources in a network environment.
C211.5	Discuss hardware security attacks and countermeasures, analyzing common
	threats to network hardware and the methods to prevent or mitigate them.

CO No.	Course Outcomes (COs)
C212.1	Design linear and nonlinear applications of operational amplifiers (OP-AMPS),
	focusing on amplifying and processing both analog and digital signals for various applications.
C212.2	Implement applications using analog multipliers and phase-locked loops (PLLs), creating circuits for modulation, frequency synthesis, and other signal processing tasks.
C212.3	Construct analog-to-digital (ADC) and digital-to-analog (DAC) converters using OP-AMPS, ensuring the accurate conversion of signals between analog and digital forms.
C212.4	Create waveforms using OP-AMP circuits, developing oscillators and waveform generators to produce specific signal shapes required for testing and communication systems.
C212.5	Evaluate special function ICs, analyzing their performance and understanding their applications in a variety of signal processing systems.

Course Code / Course Name: EC3492 / Digital Signal Processing

CO No.	Course Outcomes (COs)
C213.1	Apply the Discrete Fourier Transform (DFT) to analyze digital signals and
	systems, identifying frequency components and examining signal properties in
	the frequency domain.
C213.2	Design IIR (Infinite Impulse Response) and FIR (Finite Impulse Response)
	filters, selecting appropriate filter structures and coefficients to meet specific
	signal processing requirements.
C213.3	Characterize the effects of finite precision representation on digital filters,
	analyzing how quantization errors, rounding, and other factors impact filter
	performance and stability.
C213.4	Design multirate filters, understanding and implementing techniques for
	processing signals at different sampling rates to improve efficiency and
	performance in communication systems.
C213.5	Apply adaptive filters in communication systems, utilizing their ability to adjust
	filter parameters dynamically for improved signal processing, noise reduction,
	and system optimization.

Course Code / Course Name: EC3491 / Communication Systems

CO No.	Course Outcomes (COs)
C214.1	Understand amplitude modulation techniques, including their principles, types, and applications in communication systems for effective signal transmission.
C214.2	Apply the concepts of random processes in the design of communication systems, analyzing how noise and uncertainty impact signal transmission and system performance.
C214.3	Acquire knowledge in digital techniques, focusing on digital signal processing, modulation, and transmission methods for modern communication systems.
C214.4	Explore the principles of sampling and quantization, understanding their role in converting continuous signals into discrete forms for digital processing and transmission.
C214.5	Comprehend the importance of demodulation techniques, recognizing their role in extracting the original information from modulated signals in various communication systems.

CO No.	Course Outcomes (COs)
C215.1	Understand the functions of environment, ecosystems and biodiversity and their
	conservation.
C215.2	Identify the causes, effects of environmental pollution and natural disasters and
	contribute to the preventive measures in the society.
C215.3	Understand renewable and non-renewable resources and contribute to the
	sustainable measures to preserve them for future generations.
C215.4	Recognize the different goals of sustainable development and apply them for
	suitable technological advancement and societal development.
C215.5	Demonstrate the knowledge of sustainability practices and identify green
	materials, energy cycles and the role of sustainable urbanization

Course Code / Course Name: GE3451 / Environmental Sciences and Sustainability

Course Code / Course Name: EC3461 / Communication Systems Laboratory

CO No.	Course Outcomes (COs)
C216.1	Design AM, FM, and digital modulators tailored to specific applications,
	considering the advantages and limitations of each modulation technique for
	effective signal transmission.
C216.2	Calculate the sampling frequency for digital modulation, ensuring accurate
	representation of analog signals in digital form while minimizing aliasing and
	distortion.
C216.3	Simulate and validate various functional modules of a communication system,
	ensuring that each component performs according to its design specifications in
	a simulated environment.
C216.4	Demonstrate knowledge of baseband signaling schemes by implementing and
	analyzing digital modulation schemes, understanding their application in real-
	world communication systems.
C216.5	Apply various channel coding schemes to enhance the noise performance of
	communication systems, demonstrating the impact of coding on error correction
	and system reliability.

Course Code / Course Name: EC3462 / Linear integrated circuits Laboratory

CO No.	Course Outcomes (COs)
C217.1	Evaluate various types of feedback amplifiers, comparing their performance, characteristics, and suitability for different applications in electronic systems.
C217.2	Construct oscillators, tuned amplifiers, wave-shaping circuits, and multivibrators, selecting the appropriate components and configurations for specific design objectives.
C217.3	Simulate and verify the functionality of feedback amplifiers, oscillators, tuned amplifiers, wave-shaping circuits, multivibrators, and filters using SPICE tools to ensure correct operation in virtual environments.
C217.4	Develop amplifiers, oscillators, and D-A converters using operational amplifiers, ensuring effective signal processing and conversion with consideration of stability and bandwidth.
C217.5	Analyze filters designed with operational amplifiers, and perform experiments to assess their frequency response, confirming their performance and compliance with design specifications.

SEMESTER V

Course Code / Course Name: EC3501 / Wireless Communication

CO No.	Course Outcomes (COs)
C301.1	To explore and comprehend the principles and design of a cellular system.
C301.2	To examine and understand mobile radio propagation and digital modulation techniques.
C301.3	To explore the principles of multiple access techniques and wireless networks.
C301.4	To describe the wireless channel and emerge the system design specifications
C301.5	Construct a cellular system based on resource availability and traffic demands.

Course Code / Course Name: EC3552 / VLSI and Chip Design

CO No.	Course Outcomes (COs)
C302.1	Demonstrate in-depth knowledge of MOS technology, including its principles,
	fabrication processes, and applications in modern digital circuits.
C302.2	Analyze combinational logic circuits and their design principles, focusing on
	the design and optimization of basic logic gates and their applications.
C302.3	Examine sequential logic circuits and clocking strategies, emphasizing their role
	in creating systems with time-dependent behavior.
C302.4	Explore memory architecture and building blocks, understanding their
	structures, functionalities, and how they contribute to efficient data storage and
	retrieval.
C302.5	Apply the ASIC design process and testing methodologies, covering the steps
	involved in designing, verifying, and testing application-specific integrated
	circuits.

Course Code / Course Name: EC3551 / Transmission lines and RF Systems

CO No.	Course Outcomes (COs)
C303.1	Explain the characteristics of transmission lines, including their types, behavior,
	and losses, to understand their role in signal transmission.
C303.2	Calculate the standing wave ratio (SWR) and input impedance for high-
	frequency transmission lines to assess their performance in practical
	communication systems.
C303.3	Analyze impedance matching techniques using stubs and Smith Charts to ensure
	efficient signal transmission and minimal reflection in transmission lines.
C303.4	Comprehend the characteristics of Transverse Electric (TE) and Transverse
	Magnetic (TM) waves, focusing on their behavior in different waveguides and
	transmission media.
C303.5	Design an RF transceiver system for wireless communication, integrating
	components for transmission and reception while considering factors such as
	frequency, modulation, and signal integrity.

Course Code / Course Name: CEC352 / Satellite Communication - Professional Elective I

CO No.	Course Outcomes (COs)
C304.1	Classify and explain the characteristics of different satellite orbits in satellite Communication.
C304.2	Analyze the design and functionality of satellite subsystems.

C304.3	Calculate the satellite link power budget for efficient communication system design.
C304.4	Distinguish and categorize different access technologies for satellite
	communication systems.
C304.5	Design and develop solutions for various satellite communication applications.

Course Code / Course Name: CEC366 / Image Processing - Professional Elective II

CO No.	Course Outcomes (COs)
C305.1	Understand the basics and fundamentals of digital image processing, including
	digitization, sampling, quantization, and 2D transforms, to gain a foundational
	knowledge of how images are processed.
C305.2	Apply image processing techniques such as smoothing, sharpening, and
	enhancement to improve or modify images for various practical applications.
C305.3	Comprehend the concepts of image restoration and apply filtering techniques to
	recover images that have been degraded due to noise or other distortions.
C305.4	Examine the fundamentals of image segmentation, feature extraction,
	compression, and recognition methods, specifically focusing on their
	applications for color models in digital image processing.
C305.5	Understand the principles and methods of image compression, focusing on
	techniques that reduce file size while preserving essential image quality for
	efficient storage and transmission.

Course Code / Course Name: CEC345 / Optical Communication & Networks - Professional Elective III

CO No.	Course Outcomes (COs)
C306.1	Understand the basic elements of optical fibers, including different modes and
	configurations, to grasp their role and functionality in optical communication
	systems.
C306.2	Analyze the transmission characteristics of optical fibers, focusing on dispersion
	and polarization techniques, to evaluate their impact on signal quality and
	transmission performance.
C306.3	Design optical sources and detectors, understanding their working principles
	and application in optical communication systems for efficient signal generation
	and detection.
C306.4	Construct fiber optic receiver systems, including the relevant measurement
	techniques and tools, to ensure accurate signal reception and processing in
	optical communication setups.
C306.5	Design complete optical communication systems and networks, integrating
	various components to develop effective, high-performance communication
	infrastructures.

Course Code / Course Name: EC3561 / VLSI Laboratory

CO No.	Course Outcomes (COs)
C307.1	Develop HDL code for both basic and advanced digital integrated circuits,
	applying knowledge of digital logic design and hardware description languages.
C307.2	Integrate logic modules into FPGA boards, ensuring proper functionality and
	optimizing the design for hardware implementation.
C307.3	Synthesize, place, and route digital Intellectual Property (IP) blocks to create
	optimized and efficient hardware implementations on FPGA platforms.

C307.4	Design, simulate, and extract the layouts of both digital and analog IC blocks using Electronic Design Automation (EDA) tools, ensuring high-quality design and performance.
C307.5	Conduct rigorous testing and verification of IC designs, ensuring compliance with specifications and identifying potential issues before final production.

SEMESTER VI

Course Code / Course Name: ET3491 / Embedded Systems and IOT Design

CO No.	Course Outcomes (COs)
C308.1	Explain the architecture and key features of the 8051 microcontroller,
	highlighting its functional components and operational capabilities in embedded
	system applications.
C308.2	Construct a model of an embedded system, incorporating relevant design
	principles, hardware components, and software requirements to create a
	working prototype.
C308.3	Identify and list the fundamental concepts of real-time operating systems,
	including task scheduling, resource management, and time constraints, to
	understand their application in embedded systems.
C308.4	Examine the architecture and communication protocols of the Internet of Things
	(IoT), analyzing how different protocols facilitate the seamless interaction
	between devices in IoT networks.
C308.5	Design an IoT-based system tailored to a specific application, demonstrating an
	understanding of hardware, software, and communication protocols to build a
	functional, real-world solution.

Course Code / Course Name: CS3491/ Artificial Intelligence and Machine Learning

CO No.	Course Outcomes (COs)
C309.1	Apply appropriate search algorithms, such as depth-first, breadth-first, or
	heuristic-based approaches, to solve specific problems efficiently in the context
	of artificial intelligence.
C309.2	Utilize reasoning techniques to make decisions under uncertainty, leveraging
	methods such as probabilistic reasoning or fuzzy logic to handle incomplete or
	ambiguous information.
C309.3	Develop supervised learning models by selecting suitable algorithms, preparing
	data, and training the model to predict outcomes based on labeled datasets.
C309.4	Construct ensembling and unsupervised learning models by combining multiple
	algorithms for improved performance or discovering patterns in unlabeled data
	without prior knowledge of outcomes.
C309.5	Design deep learning neural network models, employing architectures like
	CNNs or RNNs, to tackle complex problems such as image classification,
	natural language processing, or speech recognition.

CO No.	Course Outcomes (COs)
C310.1	Understand the components of online markets and the strategies for digital
	marketing, including brand building, website planning, and content marketing.
C310.2	Develop effective Search Engine Optimization (SEO) strategies by applying on-
	page and off-page techniques, understanding keyword strategies, and utilizing
	Search Engine Marketing (SEM) for PPC advertising.
C310.3	Utilize email marketing techniques for lead generation, email automation, and
	integrating email with social media and mobile platforms to maximize campaign
	effectiveness.
C310.4	Implement social media marketing strategies using various social media
	channels to enhance brand conversations, engage customers, and build loyalty
	through influencer marketing.
C310.5	Analyze digital transformation and the role of analytics in measuring and
	optimizing campaigns across various channels, including web, mobile, social
	media, and email, to refine digital marketing strategies.

Course Code / Course Name: CCW332 / Digital Marketing - Open Elective- I

Course Code / Course Name: CBM341 / Body area networks - Professional Elective IV

CO No.	Course Outcomes (COs)
C311.1	Understand the basic concepts of Body Area Networks (BAN), including the
	challenges related to sensor design, energy supply, node placement, and system
	reliability.
C311.2	Identify the key hardware components used in BAN, including low power
	microcontrollers, antennas, sensors, and power sources such as batteries and fuel
	cells.
C311.3	Analyze the wireless communication technologies used in BANs, including RF
	communication, network topology, and standards like IEEE 802.15.1, Zigbee,
	and other relevant technologies.
C311.4	Evaluate coexistence issues in BANs, including interference from intrinsic and
	extrinsic sources, and propose countermeasures to ensure secure and reliable
	communication at the physical and data link layers.
C311.5	Apply BAN technologies in various healthcare applications, including patient
	monitoring for chronic diseases, elderly care, cardiac arrhythmias, sports
	medicine, and multi-patient systems.

Course Code / Course Name: CEC348 / Remote Sensing - Professional Elective V

CO No.	Course Outcomes (COs)
C312.1	Understand the fundamental principles of remote sensing and electromagnetic radiation, including the various components and historical development of the field.
C312.2	Analyze the interaction of electromagnetic radiation with the atmosphere and earth materials, including spectral reflectance and emission, scattering, and absorption.
C312.3	Explain the different types of orbits and platforms used in remote sensing, including the laws governing orbital motion and the classification of satellites and platforms.
C312.4	Evaluate various sensing techniques and sensor types in remote sensing, including their resolutions and characteristics, such as optical, thermal, and microwave sensors.

C312.5	Apply knowledge of remote sensing techniques and sensor calibration to assess
	the characteristics of earth observation satellites, with a focus on resolution,
	accuracy, and application.

SEMESTER VII

Course Code / Course Name: GE3791 / Human Values and Ethics

CO No.	Course Outcomes (COs)	
C401.1	Remember the importance of democratic, secular, and scientific values in the	
	harmonious functioning of social life.	
C401.2	Understand how democratic and scientific values can be applied in both	
	personal and professional contexts.	
C401.3	Apply rational thinking to identify and address social problems, finding	
	effective and practical solutions.	
C401.4	Apply ethical principles and behavior in society by making responsible and	
	morally sound decisions in various situations.	
C401.5	Understand the significance of critical thinking and the pursuit of truth in daily	
	life to foster informed decision-making.	

Course Code / Course Name: GE3751 / Principles of Management

CO No.	Course Outcomes (COs)	
C402.1	Discuss the evolution of management thoughts and the challenges of managerial	
	activities in a global business environment.	
C402.2	Explain the types of Planning and Decision making methodologies in	
	Organizations.	
C402.3	Summarize various types of Organization structure and associated Human	
	Resources activities for man-power utilization.	
C402.4	Explain about motivation theories, behaviour, leadership theories and	
	communication for effective directing.	
C402.5	Explain various Controlling techniques to maintain standards in	
	Organizations.	

Course Code / Course Name: AI3031 / IT in agricultural system - Open Elective - II

CO No.	Course Outcomes (COs)	
C403.1	Understand the applications of IT in remote sensing applications such as Drones	
	etc.	
C403.2	Understand how a greenhouse can be automated and its advantages.	
C403.3	Apply IT principles and concepts for management of field operations.	
C403.4	Understand about weather models, their inputs and applications.	
C403.5	Understand how IT can be used for e-governance in agriculture.	

Course Code / Course Name: OHS351 / English for competitive examinations - Open Elective – III

CO No.	Course Outcomes (COs)	
C404.1	Expand vocabulary and apply practical techniques to read and comprehence wide range of texts with the appropriate emphasis required for academic a	
	professional contexts.	
C404.2	Identify and correct errors in writing with precision, while ensuring clarity and	
	coherence in the expression of ideas.	
C404.3	Understand the importance of task fulfillment and utilize task-appropriate	
	vocabulary to enhance written and spoken communication.	
C404.4	Communicate effectively in group discussions, presentations, and interviews by practicing active listening, clear articulation, and engaging with others' ideas.	
C404.5	Write topic-based essays with precision and accuracy, focusing on developing	
	well-structured arguments and clear, concise writing.	

Course Code / Course Name: OHS352 / Project report writing - Open Elective - IV

CO No.	Course Outcomes (COs)	
C405.1	Develop effective project reports, demonstrating clear structure, logical flow,	
	and appropriate content for the intended audience.	
C405.2	Apply statistical tools with confidence to analyze data and present findings in a	
	structured and clear manner.	
C405.3	Explain the purpose and intention of the proposed project with coherence and	
	clarity, emphasizing its significance and relevance.	
C405.4	Create written texts tailored to achieve the intended purpose, ensuring clarity,	
	precision, and organization in technical and non-technical contexts.	
C405.5	Master the art of writing compelling proposals and project documents, using	
	appropriate formats, tone, and persuasive techniques.	

Course Code / Course Name: EC3711 / Summer internship

CO No.	Course Outcomes (COs)	
C406.1	Apply system-level design processes, verification and validation techniques,	
	and production methodologies to solve industrial or research challenges.	
C406.2	Analyze industrial or research problems to determine root causes and develop	
	appropriate solutions based on evidence and logic.	
C406.3	Evaluate system specifications, design methodologies, process parameters, and	
	testing results to ensure their effectiveness and compliance with objectives.	
C406.4	Create a detailed technical report by synthesizing information on the problem,	
	design approach, methodology, and outcomes.	
C406.5	Communicate project outcomes and solutions effectively through oral	
	presentations and viva-voce discussions.	

SEMESTER VIII

Course Code / Course Name: E	C3811 / Project Work / Internship

CO No.	Course Outcomes (COs)
C407.1	Identify a relevant industrial or research problem, define objectives clearly, and
	outline a structured methodology for solving it.
C407.2	Develop experimental methods or procedures to address the problem using
	appropriate tools and techniques systematically.
C407.3	Evaluate the experimental results to interpret data, validate findings, and
	propose effective solutions to the problem.
C407.4	Create a detailed project report covering problem definition, literature review,
	methodology, results, conclusions, and references.
C407.5	Present the project outcomes effectively through oral presentations and defend
	the work confidently during viva-voce.